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Evaporation of droplets or liquid films lying on a substrate induces internal viscous flow, which affects the
transport of suspended particles and, thus, the final deposit profile in numerous applications. In this work, the
problem of Stokes flow inside a two-dimensional droplet, representing the cross section of an evaporating
liquid line lying on a flat surface, is considered. The stream function formulation is adopted, leading to the
biharmonic equation in bipolar coordinates. A solution in closed form is obtained for any contact angle in
�0,�� and is, thus, valid for both hydrophilic and hydrophobic substrates. The solution can be used with any
type of evaporation mechanism, including diffusion, convection, or kinetically controlled modes. Both pinned
and depinned contact lines are considered. For the boundary conditions to be compatible at the contact lines,
the Navier slip boundary condition is applied on the substrate. Numerical results are presented for kinetically
and diffusion controlled evaporation. For pinned contact lines, the flow inside the evaporating liquid line is
directed towards the edges, thus, promoting the coffee stain phenomenon. In the case of depinned contact lines
and contact angle less than � /2, the flow is directed towards the center of the droplet, whereas, for strongly
hydrophobic substrates it is directed outwards.
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I. INTRODUCTION

In previous publications the authors presented an analyti-
cal solution to the problem of potential flow inside an
evaporating film, shaped as a cylindrical segment lying on a
flat surface �1,2�. This solution elucidated and quantified the
flow details during evaporation as these are dictated by the
evaporation flux from the surface and by the mobility of
the contact lines. The flow direction from the center towards
the film edges is held responsible for the appearance of the
so-called coffee-stain phenomenon �3,4�, which is known to
significantly affect the properties and performance of sub-
strate micropatterns in a variety of modern technology appli-
cations, including microelectronics �5,6�, LED manufactur-
ing �7–9�, microlens fabrication �10–12�, biosensors �13�,
biomolecule probing �14�, cell culture carriers �15�, determi-
nation of trace analytes �16�, etc.

The evaporation-induced flow inside liquid films shaped
as cylindrical segments and lying on a flat substrate was
recently exploited successfully by Sharma et al. �17� to de-
posit anisotropic particles in parallel alignment. Specifically,
the analytical solution for the potential flow field inside an
evaporating liquid line described in �2� was used to describe
qualitatively the accumulation of carbon nanotubes sus-
pended in an evaporating liquid line. Although quite useful
in interpreting spreading and deposition of suspended par-
ticles during film evaporation, the potential flow field cannot
be directly used in particle transport calculations, which
would necessitate the incorporation of viscous phenomena in
the determination of the flow field.

The main difficulty that arises in the study of viscous flow
inside evaporating films stems from the increased order of
the flow equation compared to that of the potential flow case

in combination with nontrivial compatibility issues at the
contact lines. However, given the typically small character-
istic sizes of droplets and films, it can be shown that viscous
effects are expected to dominate over inertial ones �18� so
that the Stokes flow equation can be used instead. For infi-
nitely long films shaped as cylindrical segments lying on a
flat substrate �also termed two-dimensional droplets in the
literature�, bipolar coordinates are the most suitable coordi-
nates to use in the mathematical formulation of the problem.
Even so, a set of two second-order partial differential equa-
tions need to be solved for the two velocity components. In
the stream function formulation, the biharmonic equation in
bipolar coordinates is to be solved coupled with appropriate
boundary conditions.

An additional factor that affects drastically the magnitude
and the direction of flow inside an evaporating droplet or
film is the mobility of the contact lines. More specifically, it
has been observed experimentally �3,4,19–26� that pinning
of the contact lines induces flow towards the film edges,
which are thus replenished and the initial contact area re-
mains wetted. Suspended particles can thus be transferred
towards the film edges, yielding a ringlike deposit �coffee-
stain phenomenon�. On the contrary, if the contact lines are
allowed to recede towards the center of the liquid body
�3,19–22,26,27�, then an inwards liquid motion is expected,
which may give rise to a craterlike deposit. Theoretical stud-
ies of the internal flow field in evaporating droplets are also
available using the vertically averaged liquid velocity
�1,2,4,26,28�, lubrication theory for small contact angles
�18,24,29�, direct numerical solution of the creeping flow
equation �18�, or analytical solutions in the potential flow
limit �1,2,30�. The normal component of the liquid velocity
at the interface is, in any case, the result of the sum of the
mass transfer velocity and the radial component of the inter-
face velocity, the latter expressing the local interface shift per
unit of time due to the evaporation of liquid mass. In general,
the liquid velocity is different from zero at the contact lines.*Corresponding author; vbur@iceht.forth.gr
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The knowledge of the liquid velocity at the evaporation sur-
face provides a nonhomogeneous boundary condition there,
which is used for the derivation of a nontrivial solution to the
flow problem. In the potential flow case, fluid slip on the
substrate is a natural consequence of the inviscid character of
the flow and the corresponding velocity can be allowed to
match the liquid velocity at the contact lines. However, in the
viscous flow case, some slip flow boundary condition must
be employed to achieve this matching at the contact lines. To
this end, the Navier slip condition can be used, which relates
the slip velocity to the shear stress on the substrate through a
slip coefficient. A potential drawback of such a boundary
condition is that it may allow for the development of a non-
realistic slip velocity over the entire substrate surface and not
only in the neighborhood of the contact lines. A similar prob-
lem arises in the modeling of droplet spreading with or with-
out evaporation, in which case the liquid velocity at the con-
tact lines is not defined beforehand, but can be introduced
through a Navier slip condition �31,32�.

In the present work, the biharmonic equation is solved in
bipolar coordinates to obtain an expression for the stream
function during evaporation of a two-dimensional viscous
droplet with pinned or depinned contact lines, for any con-
tact angle �0,�� and for arbitrary evaporation rate profile
along the droplet surface. The issue of incompatibility be-
tween the various boundary conditions at the contact lines
and the no-slip condition on the solid surface is treated
through the employment of the classical Navier slip condi-
tion, the role of which can be quantitatively adjusted to the
requirements at the boundaries of the droplet. A detailed dis-
cussion of this point is presented here along with typical
numerical results for kinetically and diffusion controlled
evaporation of a droplet with pinned or depinned contact
lines.

II. MODEL DEVELOPMENT AND SOLUTION

A. Flow field inside an evaporating liquid line

The problem of flow inside an evaporating liquid line ly-
ing on a flat surface can be solved on a single cross section if
the length of the liquid line is much greater than its width.
This is an assumption that holds in many applications. In this
case, the liquid line can be approximated by a cylindrical
segment thanks to the action of the surface tension
�1,2,18,19,30�, which minimizes the free surface per unit of
volume. The bipolar coordinate system is suitable to describe
the liquid-gas as well as the liquid-substrate interfaces �2�.
The bipolar coordinates � ,� �see Fig. 1� are related to the
Cartesian coordinates x ,y through x+ iy=c tanh���+ i�� /2�
�33�, which gives

x = c
sinh �

cosh � + cos �
, �1a�

y = c
sin �

cosh � + cos �
, �1b�

with −���� +�, −�����, and c=const�0. The
liquid-gas interface is attained for �=�c and the liquid-solid

interface for �=0, whereas the contact lines are described by
�→ 	� and the constant c is equal to half the wetted area
width, Rb.

The flow inside the liquid body has the characteristics of
Stokes flow, which is described by the biharmonic equation
in the stream function formulation �34�

�4
 = 0, �2�

where 
 is the stream function, and is related to the �- and
�-velocity components through the expressions �2�

v� =
cosh � + cos �

Rb

�


��
, �3a�

v� = −
cosh � + cos �

Rb

�


��
. �3b�

Following the formulation proposed by Jeffery �35� for elas-
ticity problems in the bipolar coordinate system, the bihar-
monic equation for the stream function can be written in the
form

� �4

��4 + 2
�4

��2��2 +
�4

��4 − 2
�2

��2 + 2
�2

��2 + 1��h
� = 0,

�4�

where h= �cosh �+cos �� /Rb.
The boundary conditions that apply in the case of evapo-

ration from the cylindrical surface are:

Finite velocity at the contact lines

�v���→	� = finite, �5a�

�v���→	� = finite, �5b�

β = θc

β >0
β = const

α = const

y

x

α < 0 α = 0 α > 0

α < 0 α = 0 α > 0

β = π β = 0 β = π
β = −π β = −π

β < 0

Rb

FIG. 1. Bipolar coordinate system and droplet boundaries �bold
lines�.
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Zero shear stress at evaporation surface ������=�c
= 0, �5c�

No flow through substrate �v���=0 = 0, �5d�

Normal liquid velocity at evaporation surface �v���=�c
= vLn,

�5e�

where vLn=usn+J /�, with J the local evaporation flux, usn
the normal component of the surface velocity, and � the liq-
uid density.

There is still one more boundary condition that is needed
at the liquid-solid interface. The usual no-slip assumption
cannot be employed here, since the liquid velocity is gener-
ally not equal to zero at the contact lines. A commonly used
option is the Navier slip condition �31,32�, expressed as vx
= � /���yx, where vx is the liquid velocity component that is
parallel to the surface, �yx is the shear stress, � is the liquid
viscosity, and  is the slip length. In bipolar coordinates this
condition reads as follows:

Navier slip condition �v���=0 = �/��������=0. �5f�

Using Eqs. �3a� and �3b�, the boundary conditions �5a�–�5f�
can be expressed in the stream function formulation as

��h
�


��
��

a→	�

= finite, �5a��

��− h
�


��
��

a→	�

= finite, �5b��

�	h
h� �2


��2 −
�2


��2� −
2 sin �

Rb

�


��
−

2 sinh �

Rb

�


��
���

�=�c

= 0,

�5c��

��h
�


��
��

�=0
= 0, �5d��

��− h
�


��
��

�=�c

= vLn, �5e��

��h
�


��
��

�=0
= �	h
h� �2


��2 −
�2


��2� −
2 sin �

Rb

�


��

−
2 sinh �

Rb

�


��
���

�=0
. �5f��

Equation �5e�� allows all the information about the evapo-
ration conditions to be introduced into the problem through
vLn. More specifically, the type of mechanism that controls
evaporation �diffusion, phase change, convection� dictates
the value of the local evaporation flux, J, whereas the mo-
bility of the contact lines �pinned or depinned� determines
the normal component of the surface velocity.

The expressions that provide usn as a function of the
evaporation rate in the cases of pinned and depinned contact
lines have been derived in a previous publication by the au-

thors �2� and are given, respectively, by the expressions

usn = −
JTOT

2�Rb

sin3 �c

�sin �c − �c cos �c�
1

�cosh � + cos �c�
, �6a�

usn = −
JTOT

2�Rb

sin3 �c

��c − sin �c cos �c�
cosh �

�cosh � + cos �c�
, �6b�

where JTOT is the total evaporation rate from the droplet sur-
face per unit length, given by

JTOT = Rb
−�

+� J���
cosh � + cos �c

d� . �7�

The solution of Eq. �4� subject to the boundary conditions
�5a��, �5b��, �5c��, �5d��, �5e��, and �5f�� can be obtained
following a method that is conceptually similar to the
method used by Jeffery �35�, though appropriately adapted to
the peculiarities of the problem at hand. More specifically,
the general solution of Eq. �4� has the form

h
 = e�F1�� + i�� + e−�F2�� + i�� + e�F3�� − i��

+ e−�F4�� − i�� .

We seek a solution of the type h
=�1���cos �� or h

=�1���sin ��, where �=�+ i� with � ,� real numbers. Sub-
stitution into Eq. �4� gives


 d4

d�4 − 2��2 + 1�
d2

d�2 + ��2 − 1�2����� = 0.

Making use of the characteristic equation

�4 − 2��2 + 1��2 + ��2 − 1�2 = 0,

with roots �1=�+1, �2=�−1, �3=−�+1, and �4=−�−1,
we obtain the solution

�1��� = E1 cosh�� + 1�� + E2 sinh�� + 1��

+ E3cosh�� − 1�� + E4 sinh�� − 1�� ,

except for �=0, which leads to two double roots �1,2=1 and
�3,4=−1, and for �=1, which gives one double root �1,2=0
and two distinct roots �3=2 and �4=−2. That is,

�1��� = E1� cosh � + E2� sinh � + E3�� cosh � + E4�� sinh �

for �=0 and

�1��� = E1� cosh 2� + E2� sinh 2� + E3� + E4��

for �=1.
We also seek a solution component of the type h


=�2���cosh �� or h
=�2���sinh �� and following the same
steps we find that

�2��� = D1 cos�� + 1�� + D2 sin�� + 1�� + D3 cos�� − 1��

+ D4 sin�� − 1��

except for �=0, which gives

�2��� = D1� cos � + D2� sin � + D3�� cos � + D4�� sin � ,

and for �=1, which gives
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�2��� = D1� cos 2�i + D2� sin 2�i + D3� + D4�� .

Since the solution, as the boundary conditions imply, need
not be periodical in variable �, the eigenvalues do not have
to be positive integer numbers as was the case in the prob-
lems solved by Jeffery �35�. Furthermore, the contact lines of
the liquid droplet are described by �→ 	�, thus necessitat-
ing the use of a continuous spectrum for the eigenvalues.
Also, the stream function has to be kept finite within the
domain of the droplet. Taking the above into account,�=0
and �= i�, and the general solution that applies to this prob-
lem is given by

h
 = 
0

+�

��A1 cosh � + A2 sinh ��cos ��

+ �A3 cosh � + A4 sinh ��sin ����A5 cosh ��

+ A6 sinh ���d� + �A7 cosh � + A8 sinh ���

+ 
0

+�

��C1 cosh �� + C2 sinh ���cos � + �C3 cosh ��

+ C4 sinh ���sin ���C5 cos �� + C6 sin ���d�

+ �C7 cos � + C8 sin ��� . �8�

The requirement of finite velocity at the contact lines �Eqs.
�5a�� and �5b��� simplifies Eq. �8� to

h
 = 
0

+�

��C1 cosh �� + C2 sinh ���cos �

+ �C3 cosh �� + C4 sinh ���sin ��

� �C5 cos �� + C6 sin ���d� + ��C7 cos � + C8 sin �� .

�9�

The impermeable substrate boundary condition �Eq. �5d���
requires constant 
 at �=0. This constant 
 value can be
taken equal to zero, since 
 is always defined within an
additive constant. Applying this to Eq. �9� results in C1=0.

The zero shear stress boundary condition �Eq. �5c���, after
some manipulations, can be written as ���2�h
� /��2

−�2�h
� /��2+h
���=�c
=0. Introducing the expression given

in Eq. �9� into this equation, one obtains

C4 =
C2�cosh ��c sin �c − � sinh ��c cos �c� − C3�sinh ��c cos �c + � cosh ��c sin �c�

cosh ��c cos �c + � sinh ��c sin �c
, �10�

C7 = C8 cos �c/sin �c. �11�

A combination of Eqs. �5d�� and �5f�� leads to

� ��h
�
��

�
�=0

= � 

Rb
�cosh a + 1�

�2�h
�
��2 �

�=0
. �12�

Introducing expression �9� into Eq. �12� and using Eq. �11�,
one obtains C7=C8=0 and


0

+�

��C2 + C3��C5 cos �� + C6 sin ���d�

= �/Rb��cosh � + 1�
0

+�

2�C4�C5 cos ��

+ C6 sin ���d� . �13�

Finally, the introduction of Eq. �9� into Eq. �5e�� gives


0

+�

�C2 sinh ��c cos �c + �C3 cosh ��c + C4 sinh ��c�sin �c�

� �C5 cos �� + C6 sin ���d�

= �cosh � + cos �c�
−�

� − vLn

cosh u + cos �c
du . �14�

Depending on the controlling evaporation mechanism, typi-
cally kinetic or diffusion of the vapor from the surface, and

on the motion of the contact lines, an expression for vLn can
be derived and introduced into Eq. �14� for the determination
of the unknown coefficients. A common case is that of sym-
metric evaporation with respect to the y axis. Then, 
 is an
odd function in � and is given from


 =
1

h


0

+�

�C2 sinh �� cos � + C3 cosh �� sin �

+ C4 sinh �� sin ��sin ��d� , �15�

where C6 has been merged into C2 , C3 , C4 and

C2��� =
cosh ��c cos �c + � sinh ��c sin �c

sinh ��c cosh ��c
���,�c�

− C3���
sin 2�c

sinh 2��c
, �16�

C4��� =
cosh ��c sin �c − � sinh ��c cos �c

sinh ��c cosh ��c
���,�c�

+ C3���
cos2 �c − cosh2 ��c

sinh ��c cosh ��c
, �17�
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0

+�

C3���� sinh 2��c − � sin 2�c

�cosh � + 1�sinh 2��c

+ 4�


Rb

cosh2 ��c − cos2 �c

sinh 2��c
�sin ��d�

= 
0

+�

�
2


Rb
� sin �c

sinh ��c
−

� cos �c

cosh ��c
� − � � sin �c

cosh ��c

+
cos �c

sinh ��c
� 1

�cosh � + 1�����,�c�sin ��d� , �18�

���,�c� = −
2

�


0

+�

�cosh � + cos �c�

��
−�

� vLn

cosh �� + cos �c
d���sin ��d� .�19�

At this point it is worth mentioning that the same solution
would be obtained if a different approach was used, namely,
the one that takes advantage of the fact that any biharmonic
function in �x ,y� coordinates can be reproduced using two
arbitrary independent harmonic functions f i ,gi. For instance,
it can be expressed as xf1+g1, yf2+g2, �x2+y2�f3+g3, or as
an appropriate combination of these functions �36�. The so-
lution can then be constructed in a step-by-step fashion, as
dictated progressively by the boundary conditions of the
problem �37,38�. In this way, an expression identical to Eq.
�15� can be eventually derived, which is compatible with the
boundary conditions �5a��, �5b��, and �5d��, and with the
symmetric evaporation rate with respect to the y axis. Then,
Eqs. �5c��, �5e��, and �5f�� can be used for the determination
of the unknown coefficients C2 ,C3 ,C4.

B. Case study: Kinetically controlled evaporation

Assuming slow phase change compared to vapor diffu-
sion, evaporation becomes kinetically controlled and, thus,
the evaporation flux remains constant along the surface of
the droplet,

J��� = const = J0. �20�

This evaporation mechanism is dominant in several practical
applications, including, for instance, evaporation under
vacuum, low temperature evaporation, evaporation of non-
volatile solvents, etc. In this case, using Eqs. �7� and �6a� or
�6b�, vLn is given by

vLn =
J0

�
�1 −

�c sin2 �c

�sin �c − �c cos �c�
1

�cosh � + cos �c�
� ,

�21a�

or

vLn =
J0

�
�1 −

�c sin2 �c

��c − sin �c cos �c�
cosh �

�cosh � + cos �c�
�
�21b�

in bipolar coordinates, for pinned and depinned contact lines,
respectively.

Substituting Eqs. �21a� and �21b� into Eq. �19�, the coef-
ficients C2 ,C3 ,C4 can be calculated using Eqs. �16�–�18�.
Evaluation of the coefficient C3��� from Eq. �18� can be
done numerically at discrete � values. Then, the stream func-
tion and the local velocity can be obtained from Eqs. �15�
and �3�, respectively.

III. RESULTS AND DISCUSSION

In this section, numerical results for the viscous flow field
that develops in the interior of an evaporating liquid line
lying on a flat impermeable substrate are presented. Kineti-
cally controlled evaporation is considered first. In Figs. 2�a�
and 2�b� the streamlines for the case of pinned contact lines
are plotted for �c=� /6 and �c=2� /3, respectively. The
same, constant stream function step was used in these two
figures for the sake of comparison of the two flow fields. It
was found that flow is directed from the center to the edges
in the case of pinned contact lines for any value of the con-

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2
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x/R
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R b

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0
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0.6

0.8

1.0

1.2

1.4

1.6

1.8
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R b

x/Rb

(a)

(b)

FIG. 2. Streamlines ��
=0.01� inside a kinetically controlled
evaporating droplet with pinned contact lines and contact angle: �a�
�c=� /6 and �b� �c=2� /3.
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tact angle �0,��. If the contact lines are depinned during
evaporation, then for any value of the contact angle �0,� /2�,
the liquid flow is directed towards the center of the liquid
line. However, for contact angles greater than � /2 and de-
pinned contact lines the flow field is directed towards the
contact lines, whereas for contact angle �c=� /2 no flow de-
velops inside the droplet since vLn becomes zero. The vector
representation of the flow field for �c=� /6 is shown in Figs.
3�a� and 3�b� for pinned and depinned contact lines, respec-
tively. It is interesting to note that for the same contact angle
and the same evaporation rate, the local velocity magnitude
is larger in the case of pinned contact lines than that in the
case of depinned contact lines.

All the results presented in Figs. 2 and 3 were obtained

for ̄= /Rb=10−3. In Fig. 4 the fluid velocity on the substrate
surface is plotted against the distance from the center of the
droplet for different values of  /Rb. As  /Rb decreases to
very small values, the slip velocity tends to zero over the
entire substrate except for a very narrow zone close to the
contact lines, where it takes up the required magnitude to
match the velocity that is imposed by the boundary condition
there. Hence, the solution may also be, practically, compat-
ible with the requirement of no slip at the wall in the bulk of
the wetted area, allowing only some finite slip near the con-
tact lines. Obviously, if the evaporation velocity is taken to
be zero at the contact lines �29� and the interface velocity is
also zero there �usn=0, as in the case of pinned contact lines�,
the liquid velocity is zero at the contact lines and the no-slip
condition can be applied. In the case of depinned contact
lines, this is true only if the evaporation velocity is equal in
magnitude and opposite in sign to the velocity of the contact
lines as they recede towards the center of the droplet, follow-
ing the equation

vLn = usn + J�� → �,� = �c�/� . �22�

In any other case, the liquid velocity at the contact lines is
different from zero and some slip velocity must be allowed.
For the sake of completeness, the analytical expression for
the coefficients C2, C3, and C4 for =0 �no slip� are given
below.

C2��� =
cosh ��c cos �c + � sinh ��c sin �c

sinh ��c cosh ��c − � sin �c cos �c
���,�c� ,

�23a�
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FIG. 3. Vector representation
of the internal flow field in a ki-
netically controlled evaporating
droplet with contact angle �c

=� /6, dimensionless slip coeffi-

cient ̄=10−3, and �a� pinned con-
tact lines and �b� depinned contact
lines.
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FIG. 4. Dimensionless slip velocity vs dimensionless distance
from the center of the droplet for pinned contact lines, �c=� /6 and
for various values of the slip coefficient.
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C3��� = − �
cosh ��c cos �c + � sinh ��c sin �c

sinh ��c cosh ��c − � sin �c cos �c
���,�c� ,

�23b�

C4��� =
�1 + �2�cosh ��c sin �c

sinh ��c cosh ��c − � sin �c cos �c
���,�c� ,

�23c�

where ��� ,�c� is given from Eq. �19�.
It is noteworthy that the internal flow field is not sensitive

to the slip coefficient for  /Rb values less than 10−3. Figure 5
shows a vector representation of the flow field near the con-
tact lines, assuming them pinned, for �c=� /6 and for two
values of the slip coefficient, namely,  /Rb=10−3 �Fig. 5�a��
and  /Rb=10−5 �Fig. 5�b��. A very weak effect of the slip
coefficient on the flow field near the contact lines is dis-
cerned, which, however, leaves the flow field throughout the
rest of the droplet region, practically unaffected. Needless to
say, the use of a much larger slip coefficient would certainly
affect the local flow field more significantly; however, it
would also lead to unrealistically large slip velocity far from
the contact lines.

In the case of pinned contact lines, the flow field would
direct colloidal particles towards the contact lines, thus pro-
moting their accumulation and deposition there. This has
been repeatedly observed in experiments involving colloidal
suspensions �4,19,21–25�. On the contrary, if the contact
lines are depinned and the contact angle is less than � /2, the
flow is directed towards the center of the liquid line, thus

promoting deposition away from the contact lines. This be-
havior has also been observed experimentally �21,22,25�. If
the contact lines are depinned and the contact angle is greater
than � /2, the flow is directed towards the contact lines just
like in the pinned case. However, as the contact line recedes
it is reasonable to expect that the suspended particles will be
progressively deposited over the entire area that was initially
wetted by the droplet.
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FIG. 6. �a� Schematic representation of liquid boundaries during
evaporation of a droplet with �c=�. The dotted line represents the
boundary prior to evaporation, the dashed line represents the hypo-
thetic boundary in the absence of any contact with the substrate, and
the solid line represents the boundary after the evaporation step.
Vectors show the flow direction. �b� Vector representation of the
internal flow field in a kinetically controlled evaporating droplet
with constant contact angle �c=179� /180. Inset: Detail of the flow
field in the vicinity of the contact area.
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FIG. 5. Vector representation of the internal flow field near the
contact lines in a kinetically controlled evaporating droplet with
pinned contact lines, contact angle �c=� /6, and dimensionless slip

coefficient �a� ̄=10−3 and �b� ̄=10−5.
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It would be interesting to see what happens in the extreme
case of contact angle equal to �. In this case the droplet of
radius R touches only tangentially the substrate and if it is
assumed that it keeps doing so during evaporation, then it
can be shown that a uniform flow field develops in a direc-
tion normal to the substrate �Fig. 6�a��. Specifically, since the
wetted area is diminished, uniform evaporation from the sur-
face would result in uniform shrinking of the droplet �dashed
line�. However, the need to retain a single contact point with
the substrate implies a vertical shift to the final position
�solid line�, corresponding to the uniform, vertical velocity
that was mentioned above. The solution for the internal flow
field inside an evaporating droplet that was derived in bipolar
coordinates cannot be directly applied to this particular case,
since the two poles of the bipolar system coincide for �c
=�. However, as �c→� the flow field that results from the
solution in the bipolar system reproduces closely the uniform
flow field, as shown in Fig. 6�b� �the value �c=179� /180
was used in these calculations�. Some small deviation of this
flow field from uniform velocity field is seen in the inset of
Fig. 6�b� and is due to the presence of a finite wetted area
�Rb /R=sin �c�0.017 in this illustration�.

It is also interesting to see how a different profile of
evaporation flux along the liquid surface would affect the
flow field. The expression J�x�=J0

D�b1 /�b2− �x /Rb�2+b3� re-
produces with good approximation the diffusion flux for �c
=� /3 as presented in �39�, where J0

D=2Dcs�1−�c /�� /Rb, D
is the vapor diffusion coefficient, cs is the vapor concentra-
tion at the surface of the droplet, x is the distance from the
center of the droplet and b1, b2, b3 are numerical constants
with values that depend on the contact angle and the outer
boundary at which the vapor concentration diminishes. In the
present illustration the values b1=0.0176, b2=1.01, b3
=0.065 were used, which correspond to the flux profile of
Fig. 7. Figure 8 compares the flow field that is obtained in
this case with the one that corresponds to uniform evapora-
tion flux �case of kinetically controlled evaporation�. To
make the comparison quantitative, the ratio J0

D /J0=10.67
was used in the calculations, so that the total evaporation rate

from the liquid surface is the same in both cases. It is seen
that the effect of the nonuniformity of the evaporation flux
on the flow field is rather limited �faster flow near the contact
lines�, owing obviously to the fact that the evaporation flux
profile in the diffusion controlled case remains practically
uniform over a large part of the surface and it is only at the
vicinity of the contact lines where some interesting change is
noted.

IV. CONCLUDING REMARKS

The problem of Stokes flow that is generated by evapora-
tion inside a liquid line, shaped as a cylindrical segment
lying on a flat surface, was considered and a solution for the
stream function in closed form was derived. The solution is
valid for any mechanism of evaporation, for both pinned and
depinned contact lines, provided that the profile of the local
evaporation flux on the droplet surface is known.

Numerical results in the case of slow phase change com-
pared to vapor diffusion, implying kinetically controlled
evaporation, were presented. Pinned contact lines force liq-
uid to flow towards the edges of the cylindrical segment in
order to replenish the area that is evacuated there, thus pro-
moting the well known coffee-stain phenomenon. In the case
of depinned contact lines, if the contact angle is smaller than
� /2, flow is directed towards the center of the droplet in
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FIG. 8. Vector representation of the internal flow field inside an
evaporating droplet with pinned contact lines, contact angle �c

=� /3, and dimensionless slip coefficient ̄=10−3. Comparison be-
tween �a� kinetically and �b� diffusion-controlled cases.
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order to ensure constant contact angle and satisfy the require-
ment of cylindrical shape. For a contact angle larger than
� /2 the flow field has the same direction as that in the
pinned contact lines mode. The viscous flow field is qualita-
tive similar to the potential flow field that was calculated in a
previous publication �2�; however, the viscous character of
the actual flow affects quantitatively the flow field details,
which in turn are expected to affect the motion of suspended
particles during evaporation. The quantitative study of this
process is the subject of ongoing work by the authors. In
fact, given the availability of an analytical solution for the
viscous flow field at any contact angle, deposition calcula-
tions can be extended over the entire duration of the evapo-
ration process.

It has to be mentioned that in order for the boundary
conditions to be compatible at the contact lines, combining
the boundary conditions �5c�� and �5e��, and the requirement
that the fluid velocity should have a unique single value at
the contact lines, after algebraic manipulations, the following
relation is obtained:

�cos 2�c�
�cosh � + 1�2�2


��2�� �=0
�→	�

+ 2 sin 2�c	�cosh � + 1�
�cosh � + 1�
�2


����

+ sinh �
�


��
���

�=0
�→	�

= 0.

For �c=� /2, one obtains ��cosh �+1�2��2
 /��2�� �=0
�→	�

=0,
which, combined with the Navier slip condition, Eq. �5f��,
discloses an incompatibility with the boundary condition for
the normal component of the liquid velocity at the surface,
Eq. �5e��. To circumvent this problem, a different approach is
already in progress by the authors to treat the particular case
of �c=� /2 making use of the polar coordinate system. Nev-
ertheless, in practice, the flow field in this case can be ob-
tained with the help of the solution in bipolar coordinates
derived in the present work, using a contact angle value ar-
bitrarily close to � /2.
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